Abstract

Optimal L 2 {L^2} rates of convergence are established for several fully-discrete schemes for the numerical solution of the nonlinear Schroedinger equation. Both finite differences and finite elements are considered for the discretization in space, while the integration in time is treated either by the leap-frog technique or by a modified Crank-Nicolson procedure, which generalizes the one suggested by Delfour, Fortin and Payne and possesses two useful conserved quantities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.