Abstract
Oocyte differentiation is a highly dynamic and intricate developmental process whose mechanistic understanding advances female reproduction, fertility, and ovarian cancer biology. Despite the many attributes of the zebrafish model, it has yet to be fully exploited for the investigation of early oocyte differentiation and ovarian development. This is partly because the properties of the adult zebrafish ovary make it technically challenging to access early stage oocytes. As a result, characterization of these stages has been lacking and tools for their analysis have been insufficient. To overcome these technical hurdles, we took advantage of the juvenile zebrafish ovary, where early stage oocytes can readily be found in high numbers and progress in a predictable manner. We characterized the earliest stages of oocyte differentiation and ovarian development and defined accurate staging criteria. We further developed protocols for quantitative microscopy, live time-lapse imaging, ovarian culture, and isolation of stage-specific oocytes for biochemical analysis. These methods have recently provided us with an unprecedented view of early oogenesis, allowing us to study formation of the Balbiani body, a universal oocyte granule that is associated with oocyte survival in mice and required for oocyte and egg polarity in fish and frogs. Despite its tremendous developmental significance, the Bb has been little investigated and how it forms was unknown in any species for over two centuries. We were able to trace Balbiani body formation and oocyte symmetry breaking to the onset of meiosis. Through this investigation we revealed novel cytoskeletal structures in oocytes and the contribution of specialized cellular organization to differentiation. Overall, the juvenile zebrafish ovary arises as an exciting model for studies of cell and developmental biology. We review these and other recent advances in vertebrate oogenesis in an accompanying manuscript in this issue of Developmental Biology. Here, we describe the protocols for ovarian investigation that we developed in the zebrafish, including all experimental steps that will easily allow others to reproduce such analysis. This juvenile ovary toolbox also contributes to establishing the zebrafish as a model for post-larval developmental stages.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.