Abstract

Late wilt, a destructive vascular disease of maize caused by the fungus Magnaporthiopsis maydis, is characterized by relatively fast wilting of maize plants closely before the physiological maturity stage. Previously, traditional microbiology-based methods have been used to isolate the pathogen and to characterize its traits. More recently, several molecular methods have been developed, enabling accurate and sensitive examination of the pathogen spread within the host. Here, we review the methods developed in the past 10 years in Israel, which include new or modified microbial and molecular techniques to identify, monitor, and study M. maydis in controlled environments and in the field. The assays inspected are exemplified with new findings and include microbial isolation methods, microscopic and PCR or qPCR identification, spore germination evaluation, root pathogenicity assay, M. maydis hyphae or filtrate effects on grain germination and sprout development, and a field assay. These diagnostic protocols enable rapid and reliable detection and identification of the pathogen in plants and seeds and studying the pathogenesis of M. maydis in susceptible and relatively resistant maize cultivars in a contaminated field. Moreover, these techniques are important for studying the population structure, and for future development of new strategies to restrict the disease’s outburst and spread.

Highlights

  • Late wilt, or black bundle disease, is a vascular wilt disease of Zea mays L. caused by the soil-borne and seed-borne fungus Magnaporthiopsis maydis (Samra, Sabet, and Hing; Klaubauf, Lebrun, and Crou [1]), with the synonyms Harpophora maydis, Acremonium maydis, and Cephalosporium maydis (Samra, Sabet, and Hingorani)

  • We studied the effect of M. maydis isolates metabolites on maize seed germination according to [50]

  • Isolating M. maydis directly from naturally infested soils may be a difficult task to perform since the pathogen is scattered in small quantities in the soil and the disease spreading is ununiformed in the field

Read more

Summary

Introduction

Black bundle disease, is a vascular wilt disease of Zea mays L. (corn, maize) caused by the soil-borne and seed-borne fungus Magnaporthiopsis maydis (Samra, Sabet, and Hing; Klaubauf, Lebrun, and Crou [1]), with the synonyms Harpophora maydis, Acremonium maydis, and Cephalosporium maydis (Samra, Sabet, and Hingorani). Gams (2000) introduced the genus Harpophora, based on Harpophora radiciola for a group of species that are phialophora-like in morphology, with cylindrical, curved conidia [2]. The nuclear ribosomal internal transcribed spacer (ITS) phylogeny generated by. Ward and Bateman (1999) [3] and Yuan et al (2010) [4] showed that species of Harpophora were close to or grouped with Gaeumannomyces Arx and D.L. Olivier. Based on a two-locus phylogeny, the partial large subunit (28S) of the nuclear ribosomal RNA (nrRNA) gene operon (LSU) and the partial RNA polymerase II largest subunit gene (RPB1), Klaubauf et al (2014) [1] recently transferred M. maydis to the genus Magnaporthiopsis J

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.