Abstract

DNA single-strand breaks (SSBs) are the most common type of DNA lesions as they are generated approximately 10,000 times per mammalian cell each day. Unrepaired SSBs compromise DNA replication and transcription programs, leading to genome instability, and have been implicated in many diseases including cancer. In this chapter, we introduce methods to study the ATR-Chk1 DNA damage response (DDR) pathway and DNA repair pathway in response to a site-specific, defined SSB plasmid in Xenopus laevis egg extracts. This experimental system can be applied in future studies to reveal many aspects of the molecular mechanisms of SSB repair and signaling in eukaryotes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.