Abstract

There are various techniques for dealing with incomplete data; some are computationally highly intensive and others are not as computationally intensive, while all may be comparable in their efficiencies. In spite of these developments, analysis using only the complete data subset is performed when using popular statistical software. In an attempt to demonstrate the efficiencies and advantages of using all available data, we compared several approaches that are relatively simple but efficient alternatives to those using the complete data subset for analyzing repeated measures data with missing values, under the assumption of a multivariate normal distribution of the data. We also assumed that the missing values occur in a monotonic pattern and completely at random. The incomplete data procedure is demonstrated to be more powerful than the procedure of using the complete data subset, generally when the within-subject correlation gets large. One other principal finding is that even with small sample data, for which various covariance models may be indistinguishable, the empirical size and power are shown to be sensitive to misspecified assumptions about the covariance structure. Overall, the testing procedures that do not assume any particular covariance structure are shown to be more robust in keeping the empirical size at the nominal level than those assuming a special structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.