Abstract

The NJOY Nuclear Data Processing System is widely used to convert evaluations in the Evaluated Nuclear Data Files (ENDF) format into forms useful for practical applications such as fission and fusion reactor analysis, stockpile stewardship calculations, criticality safety, radiation shielding, nuclear waste management, nuclear medicine procedures, and more. This paper provides a description of the system's capabilities, summary descriptions of the methods used, and information on how to use the code to process the modern evaluated nuclear data files from ENDF/B-VII. It begins with the generation of pointwise libraries, including reaction and resonance reconstruction, Doppler broadening, radiation heating and damage, thermal scattering data, unresolved resonance data, and gas production. It then reviews the production of libraries for the continuous-energy Monte Carlo code MCNP, multigroup neutron, photon, and particle cross sections and matrices, and photon interaction data. The generation of uncertainty information for ENDF data is discussed, including new capabilities for calculating covariances of resonance data, angular distributions, energy distributions, and radioactive nuclide production. NJOY's ability to prepare thermal scattering data evaluations for bound moderators (which was used during the preparation of the ENDF/B-VII library) is described. The strong plotting capabilities of NJOY are summarized. Many examples of black&white and color Postscript plots are included throughout the paper. The capabilities of NJOY to output multigroup data in several different formats to suit various applications is reviewed. Finally, a section is included that summarizes the history of the development of the NJOY system over the last 37 years.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call