Abstract

Electromagnetic sensors such as ground penetrating radar and electromagnetic induction sensors are among the most widely used methods for the detection of buried land mines and unexploded ordnance. However, the performance of these sensors depends on the dielectric properties of the soil, which in turn are related to soil properties such as texture, bulk density, and water content. To predict the performance of electromagnetic sensors it is common to estimate the soil dielectric properties using models. However, the wide variety of available models, each with its own characteristics, makes it difficult to select the appropriate one for each occasion. In this paper we present an overview of the available methods, ranging from phenomenological Cole-Cole and Debye models to volume-based dielectric mixing models, and (semi-) empirical pedotransfer functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.