Abstract

Optical-phase-retardation elements are widely used in many fields. Accurate measurement of their phase retardation is crucial to the practical effect of the element’s processing and application. The development and present situation of the methods for optical phase retardation measurement are reviewed, with the wave plate, the most typical phase-retardation element, as an example. The latest research progress in this field is introduced; the principles and characteristics of individual measurement method are summarized and discussed. Three new methods based on laser frequency splitting or laser feedback are presented in detail, in which the laser is not only regarded as a light source but also plays a role of sensor. Moreover, no standard wave plates are needed and arbitrary phase retardation can be measured. Traceability, high precision and high repeatability are achieved as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.