Abstract

Novel assay methods developed for the isolation and characterization of circulating tumor cells (CTC) of epithelial origin offer the potential of markers for the non-invasive gathering of clinical information relevant to the diagnosis, evolution and treatment of carcinoma. Of the numerous techniques currently used to analyze CTC, slide-based assays are perhaps the most common. While traditional combined immunocytochemical/brightfield microscopy systems continue to be the most frequently employed, fluorescence-based analysis is gaining in importance. This is partly because fluorescence microscopy analysis of slide-mounted CTC can provide simultaneously cytogenetic as well as morphologic and multiple phenotypic information. In particular, fluorescence microscopy analysis of slide-mounted CTC can accurately determine genetic changes at the chromosomal level in patients with recurrent disease. More importantly, by identifying genetic aberrations in CTC, it becomes possible to choose those patients most likely to benefit from a given treatment. The potential of this technique has already been demonstrated by employing fluorescence in situ hybridization (FISH) methods to measure expression of the HER2/neu gene in tissue from patients with breast carcinoma for the specific purpose of identifying those patients most likely to respond to Trastuzumab targeted therapy. Here, we review the major methodologies used in the preparation and analysis of the slide-based assays.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.