Abstract

Side-channel analysis attacks, especially horizontal DPA and DEMA attacks, are significant threats for cryptographic designs. In this paper we investigate to which extend different multiplication formulae and randomization of the field multiplier increase the resistance of an ECC design against horizontal attacks. We implemented a randomized sequence of the calculation of partial products for the field multiplication in order to increase the security features of the field multiplier. Additionally, we use the partial polynomial multiplier itself as a kind of countermeasure against DPA attacks. We demonstrate that the implemented classical multiplication formula can increase the inherent resistance of the whole ECC design. We also investigate the impact of the combination of these two approaches. For the evaluation we synthesized all these designs for a 250 nm gate library technologies, and analysed the simulated power traces. All investigated protection means help to decrease the success rate of attacks significantly: the correctness of the revealed key was decreased from 99% to 69%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call