Abstract

An understanding of the fatigue and fracture behavior of hard tissues (e.g., bone and tissues of the human tooth) is critical to the maintenance of physical and oral health. Recent studies suggest that there are a number of mechanisms contributing to crack extension and crack arrest in these materials, and that they appear to be a function of moisture and age of the tissue. An understanding of these processes can provide new ideas that are relevant to the design of multi-functional engineering materials. As a result, we have adopted the use of microscopic Digital Image Correlation (DIC) to examine the mechanisms of crack growth resistance and near-tip displacement distribution for cracks in human dentin that are subjected to opening mode loads. We have also developed a special compact tension (CT) specimen that permits evaluation of crack extension within small portions of tissue under both quasi-static and fatigue loads. The specimen embodies a selected portion of hard tissue within a resin composite restorative and enables an examination of diseased tissue, or portion with specific physiology, that would otherwise be impossible to evaluate. In this paper we describe application of these experimental methods and present some recent results concerning fatigue crack growth and stable crack extension in dentin and across the dentin-enamel-junction (DEJ) of human teeth.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call