Abstract
In this study, methods for evaluating the noise attenuation performance of a muffler in a muffler design problem are investigated, and a proper evaluation method is suggested for actual noise reduction in a duct when an optimally designed muffler is mounted on a duct. Mathematical expressions of the transmission loss, insertion loss, and level difference for a simple expansion chamber muffler are developed from basic acoustic equations. The effects of the locations of the measurement points, tailpipe length, and impedance at the end of the duct on the noise attenuation performance calculated using the three evaluation methods are discussed. The TL and IL maximization problems formulated using topology optimization are solved for a muffler unit, and the noise attenuation performances of the optimally designed mufflers are compared when mounted on a duct. Another acoustical topology optimization problem, a partition volume minimization problem for a muffler design, is formulated to reduce the in-duct broadband noise, and the noise attenuation performance of the optimal muffler obtained using this formulation is experimentally validated. These research results will contribute to the development of a muffler design method with high accuracy by reducing the discrepancy between the noise attenuation performances of a muffler unit and a muffler mounted on a duct.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.