Abstract

Abstract Inverse methods for determining the anomalous mean forcing functions responsible for climate change are investigated. First, an iterative method is considered, and it is shown to successfully reproduce forcing functions for various idealized and observed climate states using quasigeostrophic simulations. Second, a new inverse method that is more computationally efficient is presented. This method closes the mean-field equations by representing the second-order statistical moments, the transient eddy heat and momentum (or potential vorticity) fluxes, as linear functions of the mean field. The coefficients of the linear parameterization are determined by least squares regression. It is shown that the new method also successfully reproduces the anomalous forcing functions responsible for climatic changes in quasigeostrophic simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.