Abstract
In this paper, we consider the {{mathcal{N}mathcal{P}}}-hard problem of determining fixed-length cycles in undirected edge-weighted graphs. Two solution methods are proposed, one based on integer programming (IP) and one that uses bespoke local search operators. These methods are executed under a common algorithmic framework that seeks to partition problem instances into a series of smaller sub-problems. Large-scale empirical tests indicate that the local search algorithm is generally preferable to IP, even with short run times. However, it can still produce suboptimal solutions, even with relatively small graphs.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.