Abstract
AbstractRestriction endonucleases coupled with DNA methyltransferases form the restriction-modification (RM) systems that occur ubiquitously among bacteria. They protect bacterial cells against bacteriophage infection by cleaving incoming foreign DNA highly specifically if it contains the recognition sequence. Cellular DNA is protected from cleavage by a specific methylation within the recognition sequence, which is introduced by the methyltransferase (for review, see refs. 1,2). Restriction endonucleases recognize palindromic recognition sites, 4–8 base pairs in length. These enzymes are indispensable tools for genetic engineering. The biology and biochemistry of type II restriction endonucleases has been reviewed recently (3,4) and will be summarized only briefly here. Type IIS restriction enzymes differ from type II enzymes in that they recognize an asymmetric recognition sequence (for review, see ref. 5). Monomeric in solution, these enzymes consist of a DNA recognition domain and a catalytic domain (6).KeywordsFluorescence Resonance Energy TransferElectrophoretic Mobility Shift AssayCleavage ReactionCleavage RateFluorescence DepolarizationThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.