Abstract
Even though energy-efficient and sustainable solutions, such as light emitting diodes (LEDs), have become popular in general lighting, mainly incandescent lamps are used as measurement standards in photometry. Optical properties of the LED lamps together with the often unstable built-in power converters bring challenges to NMIs and testing laboratories. Due to the narrow and complicated spectra of the LED lamps, the uncertainties of traditional photometers calibrated by incandescent lamps tend to increase when LED lamps are measured. Switching from an incandescent lamp to an LED-based calibration source would decrease the uncertainty related to the spectral mismatch correction. LED-based photometric standard lamps would also have other benefits, such as long lifetime and good temporal stability. Moreover, as spectra of white LED lamps are limited to the visible wavelength range, a novel method for illuminance measurements based on the Predictable Quantum Efficient Detector (PQED) can be used to characterize these standard lamps with luminous flux uncertainties significantly below 1 % (k = 2) at NMIs. The method eliminates the need of photometric filters in realization of the illuminance unit. Instead, the photometric weighting is carried out numerically using a separately measured relative spectrum of the source. Well characterized LED-based calibration lamps, together with improved electrical power measurement, would reduce measurement uncertainties of illuminance, luminous intensity, luminous flux and luminous efficacy measurements of LED lamps at NMIs and testing laboratories. This would have a high impact on the development of energy-efficient LED lamps and on the assessment of the energy saving potential of solid state lighting. It is also shown, that recent advances in illuminance and electrical power measurement will enable luminous efficacy measurements of LED lamps with uncertainty well below the present state-of-the-art level of about 1 % (k = 2).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.