Abstract

Traditionally, large surveillance studies have been analyzed by the use of the MICs at which 90% of isolates tested are inhibited (MIC(90)s), MIC(50)s, frequency distributions, and percent susceptibility. In the past, these approaches have proved satisfactory for the monitoring of resistance. From these traditional uses, one can readily detect an increase in MICs for organism and drug combinations. Now that large surveillance studies have been conducted for a number of years and databases have grown to include a large number of datum points, new approaches to the extraction of useful information from these studies are needed. The present study proposes approaches, including the use of antibiotypes, principal components analysis, phylogenetics, and population genetic analysis, to the evaluation of data from large multinational surveillance studies. Application of these types of analyses can be used to describe genetic diversity, analyze changes in susceptibility patterns over time, and possibly, shed light on the origins and evolution of antimicrobial resistance. As global surveillance studies become more common and new questions concerning the evolution of resistance are raised, innovative approaches to analysis of the data will increase in importance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.