Abstract
New approaches for computing tight lower bounds to the eigenvalues of a class of semibounded self-adjoint operators are presented that require comparatively little a priori spectral information and permit the effective use of (among others) finite-element trial functions. A variant of the method of intermediate problems making use of operator decompositions having the form\(T^*T\) is reviewed and then developed into a new framework based on recent inertia results in the Weinstein-Aronszajn theory. This framework provides greater flexibility in analysis and permits the formulation of a final computational task involving sparse, well-structured matrices. Although our derivation is based on an intermediate problem formulation, our results may be specialized to obtain either the Temple-Lehmann method or Weinberger's matrix method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.