Abstract

Component mode synthesis (CMS) is a widely employed model reduction technique used to reduce the computational cost associated with the dynamic analysis of complex engineering structures. To generate CMS models, specifically the formulation of Craig and Bampton, both normal fixed-interface modes and constraint modes of the component’s structure are calculated. These modes are used in conjunction with the component level mass and stiffness matrices to generate reduced mass and stiffness matrices used in the final analyses. For some component models, the most computationally expensive part of this procedure is calculating the component normal modes information. Several different approaches are utilized to investigate the sensitivity of system level responses to variations in several aspects of the CMS models. One approach evaluates changes due to modifications of the reduced mass and stiffness matrices assuming that the mode shapes do not change. The second approach assumes that the mode shapes change but the reduced mass and stiffness matrices do not change. An example is presented to show the influence of these two approaches.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call