Abstract

Fatigue damage to babbitt layers of plain bearings is often manifested during operation. The goal of the study is to develop a model for accumulation of the fatigue damage and destruction of antifriction materials and layers of plain bearings. A generalized fatigue diagram of tin-based babbitts including the main stages of fatigue damage and a diagram of the fatigue damage development in the antifriction layer of plain bearings are presented. The generalized model of V. V. Bolotin for damage accumulation and destruction is modified with regard to antifriction materials containing rather large structural elements. An explicit (direct) modeling of damage processes appeared possible for such materials. The model describes dissipated accumulation of microcracks (interpreted as destruction of the elements of the material structure), initiation and development of a system of short cracks, initiation and development of macro-cracks up to the limit state of the object. The model suggests discretization of the volume into sections with constant levels of complex stress state and discretization of the time axis into the intervals (blocks of loading cycles). The problem of identifying the parameters of a multistage model of the fatigue damage accumulation in the alloy is solved proceeding from the analysis of the results of testing babbitt specimens. We used the simplest optimization procedure, i.e., the method of deformable polyhedron. The parameters of the power function in the dependence of the rate of microdamage accumulation on the level of stresses are obtained. The parameters of the initiation and development of the crack system in the babbitt layer are obtained from the analysis of experimental results of studying steel-babbitt samples. The problem of calculating the durability of antifriction babbitt layers required the development of a new software. The program is examined by comparing calculated and experimental values of the durability of fatigue-tested bearing specimens forced against a rotating shaft by varying cyclic load. The calculated values of the durability match the experimental which confirms the performance of the calculated model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call