Abstract
This article reviews new methods for computing vibrational energy levels of small polyatomic molecules. The principal impediment to the calculation of energy levels is the size of the required basis set. If one uses a product basis the Hamiltonian matrix for a four-atom molecule is too large to store in core memory. We discuss iterative methods that enable one to use a product basis to compute energy levels (and spectra) without storing a Hamiltonian matrix. Despite the advantages of iterative methods it is not possible, using product basis functions, to calculate vibrational spectra of molecules with more than four atoms. A very recent method combining contracted basis functions and the Lanczos algorithm with which vibrational energy levels of methane have been computed is described. New ideas, based on exploiting preconditioning, for reducing the number of matrix-vector products required to converge energy levels of interest are also summarized.Key words: vibrational energy levels, kinetic energy operators, Lanczos algorithm, contracted basis functions, preconditioning.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.