Abstract
Mini-phantoms are an important tool for measurement of basic head scatter parameters in high-energy photon beams, and recently they have also been used for beam quality specification. Therefore the feasibility and reliability of basic beam parameter acquisition using only a mini-phantom is checked in 6, 18 and 25 MV photon beams. These parameters include head scatter correction factors, phantom scatter correction factors, total scatter correction factors, wedge factors, off-axis ratios, as well as beam attenuation coefficients and beam hardening coefficients. In order to specify beam quality variations and beam quality modifications by a wedge, two different methods are compared: the first method uses a constant source to chamber distance of 1 m, the second method refers to narrow beam geometry. values derived with two different beam quality specification methods show a systematic deviation. However, relative variations of the attenuation coefficient within the beam and the associated beam quality modifications observed with the two methods show good agreement in open and wedged beams. Phantom scatter correction factors are calculated from measured head scatter correction factors and total scatter correction factors as well as from attenuation coefficients. Measured and calculated phantom scatter correction factors agree within 1% with the values given in literature. For 18 and 25 MV photon beam, wedge factors measured in water or in the mini-phantom agree within 0.5%, but maximum deviations of % are observed at 6 MV for the largest field sizes. It is demonstrated that the determination of several beam data related to full scatter conditions does not necessarily require the availability of a full scatter phantom. The mini-phantom is a reliable but very cheap and simple tool. It offers versatile possibilities to measure, check and verify basic beam parameters in high-energy photon beams.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.