Abstract

This study is intended for decision-makers in the field of water resources use (irrigation and hydropower) and for emergency prevention authorities. Another problem remains intensive technogenic pollution of the environment, including water bodies, and one of the main tasks in the conditions of technogenesis is the development of predictive models for the migration of polluting chemical elements and substances in the environment. To calculate the runoff of the river the HBV3-ETH9 hydrological model and the CMIP5 RCP4.5 and RCP8.5 climate projections were used, according to which the air temperature is expected to increase by 2.3 and 4.3 °C, respectively, in annual precipitation - by 10% of the norm. In the period 2023-2080, a gradual increase in annual runoff is expected by 9-23%, and according to the extreme scenario, by 9-36% of the norm, which is associated with intensive glacier water loss, seasonal snowmelt and rainfall. In the future, the passage of two flood peaks (in June and July) is possible. The increase in water content in April and May will contribute to increased mudflow and flood activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.