Abstract

Although dairy calves are more thermotolerant relative to mature cows, they are still susceptible to heat stress, as demonstrated by elevated physiological responses and reduced feed intake under high ambient temperature and relative humidity. However, indicators of heat stress have not been well-characterized in calves. Herein, we evaluated associations between environmental and thermoregulatory and productive animal-based indicators of heat stress in dairy calves exposed to chronic heat stress or continuous cooling in a subtropical climate. Holstein calves were exposed to heat stress (HT; shade of barn, n = 24) or continuous cooling (CL; shade of barn plus 2 fans, n = 24) from 2 to 42 d of age. Environmental indices, including ambient temperature, relative humidity, temperature-humidity index (THI), and wind speed, and animal-based indices, including respiration (RR), heart rate (HR), rectal (RT), and skin temperature (ST) were recorded thrice daily (0900, 1300, and 1900 h). Milk replacer (MI) and grain intakes were recorded daily from 15 to 42 d of age. Using segmented regression models, we then estimated THI thresholds for significant changes in physiological responses. We found a strong, positive correlation between animal-based indicators (except for HR, MI, and grain intakes) and ambient temperature and THI, with the highest correlation obtained with ST and THI (r ≥ 0.72). Ambient temperature and ST and ambient temperature or THI and MI were the only correlations that differed between treatments. The coefficient of determination (R2) obtained from regression analyses to model animal-based indicators was substantially improved by the inclusion of environmental indicators, with the greatest improvement achieved with THI. Overall, continuous cooling by fans promoted calf heat loss as CL calves had lower RR, RT, ST, and higher feed intake compared with HT calves. Temperature-humidity index breakpoints could be determined for RT (THI = 67), RR (THI = 65), and MI (THI = 82) in HT calves, and only for RR (THI = 69) in CL calves. Skin temperature variables had no detectable breakpoints in either treatment due to the strong linear relationship to THI. Collectively, our results suggest that ST is appropriate to estimate chronic heat stress and that THI is the best environmental indicator of heat stress in dairy calves raised in a shaded, subtropical environment. At a practical level, calves should be closely monitored when THI reaches 65 to 69 to minimize the risk of heat stress-related impairments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call