Abstract

BackgroundCase-based reasoning is a proven method that relies on learned cases from the past for decision support of a new case. The accuracy of such a system depends on the applied similarity measure, which quantifies the similarity between two cases. This work proposes a collection of methods for similarity measures especially for comparison of clinical cases based on survival data, as they are available for example from clinical trials.MethodsOur approach is intended to be used in scenarios, where it is of interest to use longitudinal data, such as survival data, for a case-based reasoning approach. This might be especially important, where uncertainty about the ideal therapy decision exists. The collection of methods consists of definitions of the local similarity of nominal as well as numeric attributes, a calculation of attribute weights, a feature selection method and finally a global similarity measure. All of them use survival time (consisting of survival status and overall survival) as a reference of similarity. As a baseline, we calculate a survival function for each value of any given clinical attribute.ResultsWe define the similarity between values of the same attribute by putting the estimated survival functions in relation to each other. Finally, we quantify the similarity by determining the area between corresponding curves of survival functions. The proposed global similarity measure is designed especially for cases from randomized clinical trials or other collections of clinical data with survival information. Overall survival can be considered as an eligible and alternative solution for similarity calculations. It is especially useful, when similarity measures that depend on the classic solution-describing attribute “applied therapy” are not applicable. This is often the case for data from clinical trials containing randomized arms.ConclusionsIn silico evaluation scenarios showed that the mean accuracy of biomarker detection in k = 10 most similar cases is higher (0.909–0.998) than for competing similarity measures, such as Heterogeneous Euclidian-Overlap Metric (0.657–0.831) and Discretized Value Difference Metric (0.535–0.671). The weight calculation method showed a more than six times (6.59–6.95) higher weight for biomarker attributes over non-biomarker attributes. These results suggest that the similarity measure described here is suitable for applications based on survival data.

Highlights

  • Case-based reasoning is a proven method that relies on learned cases from the past for decision support of a new case

  • We propose several methods for a similarity measure that are based on the analysis of survival data as they are available for example from clinical trials

  • The evaluation section covers capability aspects using in silico datasets and compares results with competing similarity measures

Read more

Summary

Introduction

Case-based reasoning is a proven method that relies on learned cases from the past for decision support of a new case. The accuracy of such a system depends on the applied similarity measure, which quantifies the similarity between two cases. In the field of medicine, this principle is applied either knowingly or unknowingly when a physician recalls past cases and how they were treated. Modelling this approach into computer systems has been subject of research for decades. For attributes with a nominal value domain like blood groups, it is often necessary to prepare a context-specific matrix representing the similarity values of all possible value pairs

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.