Abstract

Ability for solving story problems is an efficient determinant of mathematical knowledge and students' abilities. Research of the process of visualization and the role of mental images in mathematical reasoning show the significance of the chosen representation in the process of solving problems. The way of modelling during solving story problems tasks can contribute to (or prevent) development of relating understanding of the procedures of their solving. The aim of this research is the analysis of methods and strategies, which students use in the end of the first cycle of education when solving story problems. Research of the ways in which students present information in the process of task solving is particularly stressed. Results of the research show that students, in the process of solving story problems use exclusively symbolic representations of problems and this leads to conclusion that tasks which cannot be solved by direct methods, cannot be solved by students at all. Even though numerous kinds of research point at the significance of using different models when solving story problems, our results show that students, instead of transmitting problems to the less abstract level, they transmit them to the abstract form and this is above their perceptive ability. One of the solutions for overcoming the stated problem is defining operational tasks and contents referring to modelling and different strategies of solving story problems in the curriculum for initial teaching.

Highlights

  • Summary Ability for solving story problems is an efficient determinant of mathematical knowledge and students’ abilities

  • The aim of this research is the analysis of methods and strategies, which students use in the end of the first cycle of education when solving story problems

  • Results of the research show that students, in the process of solving story problems use exclusively symbolic representations of problems and this leads to conclusion that tasks which cannot be solved by direct methods, cannot be solved by students at all

Read more

Summary

Теоријске основе

У литератури наилазимо на различит број и редослед издвојених фаза у решавању математичких задатака. Новотна и Роџерс (Novotná and Rogers, 2003) тврде да ученици најчешће при решавању задатака развијају инструментално разумевање, тј. У том процесу идентификује четири фазе: Методе и стратегије решавања текстуалних задатака у почетној настави математике. За разлику од лингвистичких модела, у којима се потенцира разумевање текста задатка, велики број савремених аутора као кључну претпоставку у процесу решавања задатака види моделовање ситуације описане у тексту. Индиректне методе (решавање задатака коришћењем модела), које се користе у почетној настави математике, а које су одређене моделом који се користи, јесу: метода дужи, метода таблица, метода правоугаоника, метода Веновог дијаграма, метода фокусног дијаграма (Dejić i Egerić, 2007). Зељић (Zeljić, 2014) истиче да, ради повезивања аритметичког и алгебарског приступа проблемима, ученике треба усмеравати да приликом решавања текстуалних проблема сагледају општу структуру проблема без обзира на то да ли се задатак може решити директно или индиректно

Методолошки оквир истраживања
Анализа и интерпретација резултата истраживања
Задатак није

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.