Abstract

Methods and results of studies of the radiation spectra of high-current Z-pinches with different elemental compositions are presented. To examine a wide spectral range (Ehν = 30–3000 eV), two diagnostics tools were used—a transmission grating and a reflecting mica crystal. The radiation characteristics of the pinch are determined by its elemental composition. For currents of 2–3 MA and low-Z elements (aluminum), the hard end of the radiation spectrum is represented by spectral lines with clearly pronounced K lines, while for high-Z elements (tungsten), the spectrum lies in the softer photon energy range and is quasi-continuous. Two methods of spectrum processing were used to determine the plasma parameters. The parameters of aluminum plasma were traditionally determined from the intensity ratios of the K lines taking into account the plasma transparency for these lines. The spectra of tungsten plasma were compared with the results of computer simulations of pinch compression with allowance for both magnetohydrodynamic and plasma radiation processes. The applicability of these methods of spectral analysis is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.