Abstract
We show how data obtained from molecular dynamics (MD) simulations of nanoscale friction should be treated for producing constitutive system parameters with a proper error estimation. A visualisation scheme for discrete atomistic geometries based on the smooth particle method (SPM) was parametrised and validated to yield an accurate and computationally robust estimation of the contact area between two touching nanoscopic asperities. We present some thoughts on the error estimation of the contact forces occurring due to the load and the shearing motion. The variance in the friction force constitutes the main source of error for the fitting of the constitutive system parameters. The dependence of the constitutive system parameters on the number of available data points was also studied. It was shown that an equal spacing (by load) of the data points can result in better values for the system parameters than the convergence trend suggests.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.