Abstract

A growing body of paleoclimate data indicates that periods of severe drought affected the Maya Lowlands of southeastern Mexico and northern Central America, especially during the Terminal Classic period (ca. 800–950 CE), raising the possibility that climate change contributed to the widespread collapse of many Maya polities at that time. A broad range of paleoclimate proxy methods have been applied in the Maya Lowlands and the data derived from these methods are sometimes challenging for archeologists and other non-specialists to interpret. This paper reviews the principal methods used for paleoclimate inference in the region and the rationale for climate proxy interpretation to help researchers working in the Maya Lowlands make sense of paleoclimate datasets. In particular, we focus on analyses of speleothems and lake sediment cores. These two paleoclimate archives have been most widely applied in the Maya Lowlands and have the greatest potential to provide insights into climate change impacts on the ancient Maya. We discuss the development of chronologies for these climate archives, the proxies for past climate change found within them, and how these proxy variables are interpreted. Finally, we present strategies for improving our understanding of proxy paleoclimate data from the Maya Lowlands, including multi-proxy analyses, assessment of spatial variability in past climate change, combined analysis of climate models and proxy data, and the integration of paleoclimatology and archeology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call