Abstract
Clusterwise linear regression (CLR) is a well-known technique for approximating a data using more than one linear function. It is based on the combination of clustering and multiple linear regression methods. This article provides a comprehensive survey and comparative assessments of CLR including model formulations, description of algorithms, and their performance on small to large-scale synthetic and real-world datasets. Some applications of the CLR algorithms and possible future research directions are also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.