Abstract

Formation of exit burr on part edges during drilling has several undesirable features with regard to product quality and functionality. Hence it is essential to select optimum drilling process parameters to minimize burr size at the production stage. This paper presents the application of the Taguchi optimization method for simultaneous minimization of burr height and burr thickness influenced by cutting conditions and drill geometry. The Taguchi design approach to the multi-objective optimization problem is based on the introduction of a new concept of fitness function for each trial of orthogonal array. The fitness function is derived through mapping the objective functions of the drill optimization problem. In the present work, optimal values of cutting speed, feed, point angle and lip clearance angle are determined for selected drill diameter values to minimize burr height and burr thickness during drilling of AISI 316L stainless steel workpieces. The details of experimentation, analysis of means and analysis of variance are presented in the paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.