Abstract
Microarray technology is becoming a powerful tool for clinical diagnosis, as it has potential to discover gene expression patterns that are characteristic for a particular disease. To date, this possibility has received much attention in the context of cancer research, especially in tumor classification. However, most published articles have concentrated on the development of binary classification methods while neglected ubiquitous multiclass problems. Unfortunately, only a few multiclass classification approaches have had poor predictive accuracy. In an effort to improve classification accuracy, we developed a novel multiclass microarray data classification method. First, we applied a "one versus rest-support vector machine" to classify the samples. Then the classification confidence of each testing sample was evaluated according to its distribution in feature space and some with poor confidence were extracted. Next, a novel strategy, which we named as "class priority estimation method based on centroid distance", was used to make decisions about categories for those poor confidence samples. This approach was tested on seven benchmark multiclass microarray datasets, with encouraging results, demonstrating effectiveness and feasibility.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.