Abstract

As soft-hardware-logic circuits had been proposed in the literature as an alternative for digital circuits taking advantage the fact that any Boolean function could be implemented with the same cell, just configuring external signals, this work shows a methodology that could be followed particularly for the design of a four bits logic gate, using the so-called neuron MOS transistor (ν-MOS). Simulation results show the feasibility of the design for performing as XNOR, NOR, OR, XOR, AND or NAND logic gates, for instance. In order to extrapolate the design to a higher number of bits, the key issue is to properly consider the weight of the input capacitances in correlation with the number of input bits. A D/A converter can be used as the input stage of the configuration. This design considers the D/A converter-less version, since it helps to increase device integration as the number of transistors used is reduced with no difference in its performance. The design should be based on the theoretical floating potential diagram (FPD) of the desired logic gate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call