Abstract
The article discusses the improvement of the digital image correlation (DIC) method for analyzing deformations in RC beams, specifically focusing on the importance of zero-strain verification. This step is critical for ensuring high measurement accuracy, as it helps identify and minimize systematic and random errors. Before starting the research, system calibration is conducted, which includes the assessment of background noise and stability that influence the results. The study shows that proper sample preparation, pattern creation, and control of external factors allow for obtaining reliable data. The application of DIC enables remote monitoring of cracks and evaluation of the stress-strain state of structures. It has been established that this method is useful not only for scientific experiments but also in practical engineering, contributing to the increased reliability of structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.