Abstract

The main purpose of this paper is to develop a reliable method based on a three-dimensional (3D) finite-element (FE) model to simulate the constitutive behaviour of reinforced concrete structures strengthened with post-tensioned tendons taking into account the reduction of the pre-stressing stress due to the steel relaxation. The post-tensioned concrete is modelled as a composite material whose behaviour is described with the serial-parallel rule of mixtures (S/P RoM) (Rastellini et al, 2008; Martinez et al., 2008, 2014) whereas the stress relaxation of the steel is simulated using a viscoelastic model called Generalized Maxwell. A 3D FE model was used, where the nonlinear material behaviour and geometrical analysis based on incremental–iterative load methods were adopted. Validation by comparison with the analytic solution will be done for the case of a concrete beam with a linear steel tendon and for a parabolic pre-tensioned steel tendon embedded. Some viscoelastic cases are presented in order to perceive the behaviour of the Generalized Maxwell model. Several examples are shown where the capabilities of the method on large scale structures are exhibited.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.