Abstract
Driver distraction and fatigue have become one of the leading causes of severe traffic accidents. Hence, the systems that implement driver monitoring systems are crucial. Usually such systems used a monocular camera to recognize driver behavior. Even with the growing development of advanced driver assistance systems and the introduction of third-level autonomous vehicles, this task is still trending and complex due to challenges such as in-cabin illumination change and the dynamic background. To reliably compare and validate driver inattention monitoring methods a limited number of public datasets are available. The paper proposes a methodology for in-the-wild dataset creation of vehicle driver for recording an oculomotor activity, a video images of a driver as well as relevant smartphone sensors that track vehicle movement. Based on the methodology we plan to conduct in-the-wild experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.