Abstract

A network with multi-state arcs or nodes is commonly called a multi-state network. In the real world, the system reliability of a multi-state network can vary over time. Hence, a critical issue emerges to characterize the time attribute in a stochastic flow network. To solve this issue, this study bridges conventional reliability theory and the reliability of multi-state network. This study utilizes exponential distribution as a possible reliability function to quantify the time attribute in a multi-state network. First, the reliability of every single component is modeled by exponential distribution, where such components comprise a multi-state element. Once the time constraint is given, the capacity probability distribution of arcs can be derived. Second, an algorithm to generate minimal capacity vectors for given demand is provided. Finally, the system reliability can be calculated in terms of the derived capacity probability distribution and the generated minimal capacity vectors. A maintenance issue is further discussed according to the result of system reliability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.