Abstract

Introduction. The problem of food adulteration is highly relevant today. Food manufacturers are increasingly replacing expensive raw materials with cheaper poultry. We aimed to develop an effective method for identification and quantification of chicken meat and egg products in multicomponent meat systems using real-time PCR. Study objects and methods. We studied native animal tissue, namely that of chicken, pork, beef, turkey, quail, duck, horse meat, rabbit, sheep, and goat. Standard samples were taken from pure fresh chicken muscle tissue. We also used raw, boiled, and powdered chicken eggs. For a semiquantitative analysis of chicken mass in the sample, we compared the threshold cycle (Ct) of chicken DNA and the threshold cycles of calibration samples. To ensure the absence of PCR inhibition, we used an internal control sample which went through all the stages of analysis, starting with DNA extraction. Results and discussion. We developed a methodology to qualitatively determine the content of chicken tissue in the product and distinguish between the presence of egg products and contamination on the production line. The method for chicken DNA identification showed 100% specificity. This genetic material was detected in the range of 0.1% to 0.01% of chicken meat in the sample. The efficiency of the duplex PCR system for chicken DNA detection was more than 95% (3.38 on the Green slope channel and 3.45 on the Yellow slope channel). The analytical sensitivity of the primers was 40 copies/reaction. Conclusion. Our methodology is suitable for analyzing multicomponent food products, raw materials, feed, and feed additives. It can identify the content of chicken meat at a concentration of up to 1%, as well as distinguish egg impurities from contamination of various origin. PCR allows differentiation between chicken meat and egg products.

Highlights

  • The problem of food adulteration is highly relevant today

  • We aimed to develop an effective method for identification and quantification of chicken meat and egg products in multicomponent meat systems using real-time polymerase chain reaction (PCR)

  • The conditions for analysis were as follows: for a positive PCR control, the threshold cycle values ofCt < 26 were present in the Green and Yellow channels; for a negative extraction control and a negative PCR control, the threshold cycle values were absent in all the channels; the threshold cycle value for the internal control sample (ICS) was not lower than Ct ≤ 24 for qualitative determination, since higher values indicate PCR inhibition

Read more

Summary

Introduction

Food manufacturers are increasingly replacing expensive raw materials with cheaper poultry. We aimed to develop an effective method for identification and quantification of chicken meat and egg products in multicomponent meat systems using real-time PCR. The method for chicken DNA identification showed 100% specificity This genetic material was detected in the range of 0.1% to 0.01% of chicken meat in the sample. Our methodology is suitable for analyzing multicomponent food products, raw materials, feed, and feed additives. It can identify the content of chicken meat at a concentration of up to 1%, as well as distinguish egg impurities from contamination of various origin. Food manufacturers are increasingly replacing expensive raw materials, such as good quality beef, with cheaper poultry. Rospotrebnadzor rejected 519 batches of meat and meat products weighing 3509 kg (compared to 459 batches of 1685 kg in 2017) and 168 batches of poultry, eggs, and their products weighing 1951 kg (compared to 159 batches of 975 kg in 2017)

Objectives
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.