Abstract
AbstractProbabilistic sensitivity analysis is a crucial tool in the uncertainty analysis of systems, which allows the understanding of how the uncertainty in the output response can be apportioned to different sources of uncertainty in the input parameters. Sobol’s method is a widely accepted global sensitivity analysis (GSA) technique that has been applied to rank the input design parameters, based on their respective impact on the response randomness. Although this variance-based technique is highly efficient when the design parameters are independent, the estimation of Sobol indices in the presence of correlation has not been sufficiently documented. This paper addresses this shortcoming through the development of a generalized method for GSA in the Bayesian back-analysis framework, in which the Kullback-Leibler (K-L) entropy measure serves as the measure of sensitivity. The methodology has been explored in the context of design of flexible pavements in the mechanistic-empirical (M-E) framework, in whi...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.