Abstract

The current environmental concern has led both the industry and researchers to look for alternate means of transport. Amongst them, the hyperloop has become a quite promising idea. In order to overcome some of its limitations, including a compressor in its propulsive system has been investigated. In this paper, a strategy to improve the design of the mixer, which will blend the bypass and core streams coming out of the compressor, was addressed. Due to the lack of ad hoc compressors and the impossibility of experimental testing, a multidimensional optimization methodology with CFD tools was developed. A Taguchi DOE was employed for a preliminary 2D optimization from an initial geometry, whereas a numerical adjoint method was explored for the whole 3D mixer. By using this method, an initial decrease in the pressure drop of 16% was obtained with the 2D stage, whereas an additional 10% reduction was achieved in the 3D optimization. With this, the propulsive efficiency of the whole hyperloop system will be improved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.