Abstract
The structure of the protein tumour necrosis factor (TNF) was determined from crystals of space group P3(1)21 which contain six copies of the TNF monomer per crystallographic asymmetric unit [Jones, Stuart & Walker (1989). Nature (London), 338, 225-228]. The nature of these crystals (relatively high crystallographic symmetry coupled with multiple copies of the protein in the asymmetric unit) led to some peculiarly challenging problems at several points in the structure determination. In particular, (1) self-rotation function calculations failed to yield clearly interpretable solutions, (2) the analysis of difference Patterson maps for heavy-atom derivatives required the development of a Patterson search program suite GROPAT. The redundancy in the asymmetric unit allowed refinement of poor-quality isomorphous phases at 4 A resolution and phase extension from 4 to 2.9 A resolution using real-space symmetry averaging and solvent flattening in the absence of any isomorphous phase information. Despite further difficulties caused by structural differences between the six independent copies of the monomer the resultant electron density map was of high quality and proved to be easily interpretable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Acta Crystallographica Section A Foundations of Crystallography
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.