Abstract
A technique was developed and applied to understand the mechanism of fuel oxidation in an internal combustion engine. This methodology determines the fuel and concentrations of various intermediates during the combustion cycle. A time-resolved measurement of a large number of species is the objective of this work and is achieved by the use of a sampling probe developed in-house. A system featuring an electromagnetically actuated sampling valve with internal N 2 dilution was developed for sampling gases coming from the combustion chamber. Combustion species include O 2, CO 2, CO, NO x , fuel components, and hydrocarbons produced due to incomplete combustion of fuel. Combustion gases were collected and analyzed with the objectives of analysis by an automotive exhaust analyzer, separation by gas chromatography, and detection by flame ionization detection and mass spectrometry. The work presented was processed in a homogeneous charge compression ignition combustion mode context.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.