Abstract

Abstract MADYMO articulated full vehicle models of the 1992 Ford Taurus, 1995 Chevrolet Lumina and the 1994 Dodge Intrepid for frontal and side impact modes have been developed and validated against test data. MADYMO (Mathematical Dynamic Model) is typically used to model occupants in the environment of the vehicle interior and thus finds application mainly in assessing occupant injuries. In this study however, MADYMO has been employed not only to model the occupants but also to represent the major load bearing structures in the vehicles. Input for the MADYMO models consisting of rigid body joint stiffness was obtained from corresponding full vehicle Finite Element (FE) models. Model validation was done by comparing the vehicle and dummy numbers with the New Car Assessment Program (NCAP) test results. Models correlated very well with both test and FE data. This modeling approach demonstrates the utility of rigid body based full car models for crashworthiness analysis. Such models result in significant saving in computational time and resources. In this paper, we describe the simulation of two different crash modes: full frontal and offset frontal impacts using the full vehicle MADYMO models. These simulations were validated with the corresponding test results in full frontal mode and IIHS offset mode. The models are useful for simulating a variety of impact situations, for example, with different occupant sizes, occupant positions, impact velocities, and in car to car impacts for performing compatibility studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call