Abstract

This paper introduces some latest developments regarding the X-ray imaging methodology and applications of the X-ray imaging and biomedical application beamline (BL13W1) at Shanghai Synchrotron Radiation Facility in the past 5 years. The photon energy range of the beamline is 8–72.5 keV. Several sets of X-ray imaging detectors with different pixel sizes (0.19–24 μm) are used to realize X-ray microcomputed tomography (X-ray micro-CT) and X-ray in-line phase-contrast imaging. To satisfy the requirements of user experiments, new X-ray imaging methods and image processing techniques are developed. In vivo dynamic micro-CT experiments with living insects are performed in 0.5 s (sampling rate of 2 Hz, 2 tomograms/s) with a monochromatic beam from a wiggler source and in 40 ms (sampling rate of 25 Hz, 25 tomograms/s) with a white beam from a bending magnet source. A new X-ray imaging method known as move contrast X-ray imaging is proposed, with which blood flow and moving tissues in raw images can be distinguished according to their moving frequencies in the time domain. Furthermore, X-ray speckle-tracking imaging with twice exposures to eliminate the edge enhancement effect is developed. A high-precision quantification method is realized to measure complex three-dimensional blood vessels obtained via X-ray micro-CT. X-ray imaging methods such as three-dimensional X-ray diffraction microscopy, small-angle X-ray scattering CT, and X-ray fluorescence CT are developed, in which the X-ray micro-CT imaging method is combined with other contrast mechanisms such as diffraction, scattering, and fluorescence contrasts respectively. Moreover, an X-ray nano-CT experiment is performed with a 100 nm spatial resolution. Typical user experimental results from the fields of material science, biomedicine, paleontology, physics, chemistry, and environmental science obtained on the beamline are provided.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.