Abstract
The relevance of the problem is justified and the review of existing methods for determining the overhead line sag by the period of the conductor owned oscillations is conducted. The method of controlling the sag by the period of its own oscillations is briefly presented. The experimental installation for conducting full-scale tests is described, which includes the conductor (64 m), rigid fasteners at the points of conductor suspension, accelerometer, and temperature sensor mounted on the conductor, data from which are processed and recorded by the specialized software. The measurement method is explained with a detailed description. The conductor oscillations spectral analysis is performed. The results of experimental main harmonic frequency measurements, conductor, and changes in the sag are presented. A comparative results analysis showed the efficiency of the proposed method. The described method for determining the sag is easy to use (it is enough to install an accelerometer on the conductor and process data from it) and can be recommended for monitoring the condition of overhead power lines. The correlation of changes in the conductor oscillations spectral harmonics amplitude with temperature was studied. It is found that the correlation coefficient initially increases with the growth of the harmonics number. It is maximal for the ninth harmonic R = −0.9, and then slowly weakens, remaining between 0.9 and 0.8. This property of high-frequency harmonic oscillations can be used in the high-voltage lines condition diagnosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.