Abstract

Phosphorus (P) fertilizers are crucial to achieve peak productivity in agricultural systems. However, the fate of P fertilizers via microorganism incorporation and the exchange processes between soil pools is not well understood. 18Oxygen-labelled phosphate (18O- Pi) can be tracked as it cycles through soil systems. Our study describes biological and geochemical P dynamics using a tandem mass spectrometry (MS/MS) method for the absolute quantification of 18O- Pi. Soil microcosms underwent three treatments: (i) 18O- Pi, (ii) unlabelled phosphate (16O- Pi) or (iii) Milli-Q control, dissolved in a bio-stimulatory solution. During a 6-week series the microcosms were sampled to measure P by Hedley sequential fractionation and DNA extraction samples digested to 3′-deoxynucleoside 5′-monophosphates (dNMP). A MS/MS attached to a HPLC analyzed each P-species through collision-induced dissociation. The resin-extractable and bicarbonate 18O- Pi and 16O- Pi fractions displayed similar precipitation and adsorption-desorption trends. Biotic activity measured in the NaOH and dNMP fractions rapidly delabelled 18O- Pi; however, the MS/MS measured some 18O that remained between the P backbone and deoxyribose sugars. After 6 weeks, the 18O- Pi had not reached the HCl soil pool, highlighting the long-term nature of P movement. Our methodology improves on previous isotopic tracking methods as endogenous P does not dilute the system, unlike 32P techniques, and measured total P is not a ratio, dissimilar from natural abundance techniques. Measuring 18O- Pi using MS/MS provides information to enhance land sustainability and stewardship practices regardless of soil type by understanding both the inorganic movement of P fertilizers and the dynamic P pool in microbial DNA.

Highlights

  • Phosphorus (P) is an essential macronutrient, yet it is frequently the limiting factor for biological activity in soils worldwide [1]

  • There were no trends in the quantity of endogenous 16O- Pi in the control microcosms during the time series

  • There were no differences in the 4000 QTRAP measured Pi from weeks 4 to 6; the AA3 revealed a decrease in the quantity of Pi from week 4 to weeks 5 and 6

Read more

Summary

Introduction

Phosphorus (P) is an essential macronutrient, yet it is frequently the limiting factor for biological activity in soils worldwide [1]. Quantification of 18O-phosphate species funders provided support in the form of stipend for the author AS, but did not have any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.