Abstract
The partial least squares procedure was originally developed to estimate the slope parameter in multivariate parametric models. More recently it has gained popularity in the functional data literature. There, the partial least squares estimator of slope is either used to construct linear predictive models, or as a tool to project the data onto a one-dimensional quantity that is employed for further statistical analysis. Although the partial least squares approach is often viewed as an attractive alternative to projections onto the principal component basis, its properties are less well known than those of the latter, mainly because of its iterative nature. We develop an explicit formulation of partial least squares for functional data, which leads to insightful results and motivates new theory, demonstrating consistency and establishing convergence rates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.