Abstract

Blood Concentrates (BCs) are autologous non-transfusional therapeutical preparations with biological properties applied in tissue regeneration. These BCs differ in the preparation method, in fibrin network architecture, growth factors release as well as in platelet/cell content. Methodological changes result in distinct matrices that can compromise their clinical effectiveness. The present study evaluated the influence of different g-forces and types of tubes in the release of vascular endothelial growth factor (VEGF) from platelet-rich fibrin (PRF) as a function of time. The PRF-like samples were obtained with three g-forces (200, 400, and 800 x g) for 10 minutes in pure glass tubes or in polystyrene-clot activator tubes. Scanning and Transmission electron microscopy was used to morphometric analyzes of PRF's specimens and flow cytometry was used to quantify VEGF slow release until 7 days. Our results showed that platelets were intact and adhered to the fibrin network, emitting pseudopods and in degranulation. The fibrin network was rough and twisted with exosomic granulations impregnated on its surface. An increase in the concentration of VEGF in the PRF supernatant was observed until 7 days for all g forces (200, 400 or 800 xg), with the highest concentrations observed with 200 x g, in both tubes, glass or plastic. Morphological analyzes showed a reduction in the diameter of the PRF fibers after 7 days. Our results showed that g-force interferes with the shape of the fibrin network in the PRF, as well as affect the release of VEGF stored into platelets. This finding may be useful in applying PRF to skin lesions, in which the rapid release of growth factors can favor the tissue repair process. Our observations point to a greater clarification on the methodological variations related to obtaining PRF matrices, as they can generate products with different characteristics and degrees of effectiveness in specific applications.

Highlights

  • Our results showed that the variation in g-force for the production of platelet-rich fibrin (PRF) interferes with the shape of the fibrin network and in the vascular endothelial growth factor (VEGF) release

  • The lower g-force promote highest concentration of VEGF and decrease of the fibrin fibers diameter. This finding may be useful in applying PRF to skin lesions, in which the rapid release of growth factors can favor the tissue repair process

  • Our results demonstrated that the use of the glass tube provided higher concentrations of VEGF released in all g-force bands, especially after 72 hours, when compared to those obtained in plastic tubes with clot activator

Read more

Summary

Methods

The participants were healthy, non-smoker, adult women (n = 5) who agreed to donate 120 mL of blood to the study. The present study observed all ethical standards for scientific research with humans in conformity with the Declaration of Helsinki (World Medical Association Recommendation 2013). The Research Ethics Committee approved the study of the Medical School of the University of Brasilia, Brazil, under number 055468/2015. Formation of blood concentrates from whole blood. Blood samples were obtained pure glass tubes type 10 mL (Montserrat, Brazil) and polystyrene clot activator tubes (Greiner Bio-One, Brazil) by vacuum collection. Samples’ blood was collected and immediately transferred to 25o rotor fixed-angle centrifuge FibrinFuge (Monserrat, Brazil) centrifugated with 200, 400, and 800 x g at 10 minutes.

Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.