Abstract

To review the issues and methodologies in epidemiologic time series studies of daily counts of mortality and hospital admissions and illustrate some of the methodologies. This is a review paper with an example drawn from hospital admissions of the elderly in Cleveland, Ohio, USA. The central issue is control for seasonality. Both over and under control are possible, and the use of diagnostics, including plots, is necessary. Weather dependence is probably non-linear, and adequate methods are necessary to adjust for this. In Cleveland, the use of categorical variables for weather and sinusoidal terms for filtering season are illustrated. After control for season, weather, and day of the week effects, hospital admission of persons aged 65 and older in Cleveland for respiratory illness was associated with ozone (RR = 1.09, 95% CI 1.02, 1.16) and particulates (PM10 (RR = 1.12, 95% CI 1.01, 1.24), and marginally associated with sulphur dioxide (SO2) (RR = 1.03, 95% CI = 0.99, 1.06). All of the relative risks are for a 100 micrograms/m3 increase in the pollutant. Several adequate methods exist to control for weather and seasonality while examining the associations between air pollution and daily counts of mortality and morbidity. In each case, care and judgement are required.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.