Abstract

New generation of spark ignition (SI) engines are expected to represent most of the future market share in a context of powertrain hybridization. Nevertheless, the current technology has still critical challenges in front to meet incoming CO2 and pollutant emissions standards, so new technologies are emerging to improve engine efficiency. In parallel to combustion concepts, a key required trend is downsizing based on high engine boosting. New turbocharger technologies, such as variable geometry turbines (VGT), become suitable for its application under the demanding operating conditions of SI engines. In this work, a methodology for the analysis of the VGT usage in comparison with traditional waste-gate (WG) turbine is presented. From experimental data obtained in engine test cell, a theoretical analysis aimed at ensuring full control on turbine boundary conditions, such as combustion variability, compressor map or engine calibration, was conducted. Taking advantage of highly validated and physically representative 1-D gas-dynamics and turbocharger models, the engine performance is discussed as a function of the turbine technology at full and partial load in a wide range of engine speed at the same time as the altitude impact is addressed. In all, it was found that VGT technology shows less limitations in extreme working conditions, such as low- and high-end torque regions, where the WG technology represents a limitation in terms of the maximum power output. Full load differences become more even more evident in altitude working conditions. When it comes to partial loads, differences in fuel consumption are minor, but potentially beneficial for VGTs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call